The Science of Wireless Radiation

Radio frequency waves have been used for more than a hundred years to carry signals from transmitting towers to distant receivers. This technology has informed and entertained millions of people around the world. However, the technology offered today by the wireless industry puts powerful transmitters, as well as receivers, much closer to users of all ages than ever before.

​This two-way communication, and the increased radiation needed to support it, is reason for concern. Indeed, manufacturers of wireless devices warn consumers to keep their phones, tablets, baby monitors and other wireless devices away from their bodies.

Over the next decade, numerous studies were conducted regarding the safety of RF radiation with varying results, and controversy remained about the relevance of animal studies to humans. Of particular importance was the work of researchers at the University of Kentucky where they were able to show how exposure to wireless radiation can damage or even destroy brain cells (Zhao, et al 2007). Researchers in Samsun, Turkey published findings that rats prenatally exposed to cell phone radiation developed impaired learning and also showed damage to those parts of the brain involved in memory and learning (Inkinci, et al 2013).

In yet another study, rats prenatally exposed to wireless radiation also had damaged spinal cords (Odaci, et al 2013). Regarding human impacts of wireless radiation, UCLA researchers (Divan, et al 2008) studied 13,000 mothers and children and found that prenatal exposure to cell phones was associated with a higher risk for behavioral problems and hyperactivity in children. Scientists continue to conduct research on the human impact of wireless radiation exposure.


Consumer demand for connectivity everywhere has resulted in the installation of many more powerful local wireless transmitters and receivers, and now hundreds of thousands of rooftop, pole-mounted and tower transmitters (antennas) are placed in close proximity to private homes, apartments, schools, office buildings, retail and recreation areas. “Free WiFi” is commonly advertised to attract customers at bars, restaurants, hotels and coffee shops. Wireless routers in public spaces are very powerful because they are intended to power many laptops or tablets simultaneously.

This ubiquitous and ever-growing wireless world that we live in means that wireless radiation is all around us. But you can still make some personal choices that can reduce your exposure. As mentioned previously, keeping a safe distance from transmitters or antennas and keeping your personal wireless devices away from your body is relatively easy to do. The amount of time you spend using wireless devices is also important. Remember that exposure adds up over time.

A recent study (Aldad, et al 2012) conducted at Yale University found that pregnant laboratory mice exposed to ordinary cell phone radiation produced offspring that were more hyperactive and had poorer memories compared to a control group that was not exposed. Dr. Hugh Taylor, Chair of the Department of Obstetrics, Gynecology and Reproductive Sciences at Yale University School of Medicine and his team of researchers concluded that cell phone radiation had damaged neurons in the prefrontal cortex of the brain.

The work of the Yale researchers followed a steady progression of scientific studies that demonstrated health and behavioral effects from wireless radiation. Twenty


years ago, a review of the scientific literature on radiofrequency/microwave radiation conducted by the U. S. Air Force Materiel Command (Bolen 1994) concluded that “behavior may be the most sensitive biological component to RF/Microwave radiation.” Scientists at the University of Washington demonstrated DNA breaks in brain cells of rats resulting from exposure to microwave radiation (Lai, et al 1995).


While we wait for the scientific process to provide us with a deeper understanding of this issue, and for government agencies to adopt appropriate exposure thresholds, a precautionary approach to exposures, especially during pregnancy, seems warranted.

Selected Resources:

  1. Association Between Maternal Exposure to Magnetic Field Nonionizing Radiation During Pregnancy and Risk of Attention-Deficit/Hyperactivity Disorder in Offspring in a Longitudinal Birth Cohort. Li, D. et al. Jama Netw Open. 3(3) e201417 (2020).

  2. Comparison of Effects of 2.4 GHz Wi-Fi and Mobile Phone Exposure on Human Placenta and Cord Blood. Bektas., et al. Biotechnology & Biotechnological Equipment. 34(1), 154-162 (2020).

  3. Mother’s Exposure to Electromagnetic Fields Before and During Pregnancy is Associated with Risk of Speech Problems in Offspring. Zarei, S., et al. Journal of Biomedical Physics and Engineering 9(1):61-68 (2019). 

  4. Prenatal Exposure to Extremely Low-Frequency Magnetic Field and Its Impact on Fetal Growth. Ren, Y., et al. Environmental Health (2019). 

  5. The Effects of Radiofrequency Radiation on Mice Fetus Weight, Length and Tissues. Alimohammadi, O., et al. Data in Brief 19:2189-2194 (2018).

  6. Effects of Prenatal Exposure to WiFi Signal (2.45 GHz) on Postnatal Development and Behavior in Rat: Influence of Maternal Restraint. Othman, H., et al. Behavioral Brain Research 326: 291-301 (2017). 

  7. Maternal Cell Phone Use During Pregnancy and Child Behavioral Problems in Five Birth Cohorts. Birks, Guxens, et al. Environment International (2017).

  8. Exposure to Magnetic Field Non-Ionizing Radiation and the Risk of Miscarriage: A Prospective Cohort Study. Li, De-Kun, et al. Scientific Reports (2017). 

  9. Postnatal Development and Behavior Effects of In-Utero Exposure of Rats to Radiofrequency Waves Emitted From Conventional WiFi Devices. Othman, H., et al. Environmental Toxicology and Pharmacology 52:239-247 (2017).

  10.  Lasting Hepatotoxic Effects of Prenatal Mobile Phone Exposure. Yilmaz, A., et al. The Journal of Maternal-Fetal & Neonatal Medicine 30(11): 1355-1359 (2017). 

  11. Multiple Assessment Methods of Prenatal Exposure to Radio Frequency Radiation from Telecommunication in the Mothers and Children's Environmental Health (MOCEH) Study. Choi, Ha, et al. International Journal of Occupational Medicine and Environmental Health 29(6):959-972 (2016). ​

  12. The Use of Signal-Transduction and Metabolic Pathways to Predict Human Disease Targets from Electric and Magnetic Fields Using in vitro Data in Human Cell Lines. ​Parham, F., et al. Frontiers in Public Health (2016).

  13. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Yakymenko, et al. Electromagnetic Biology and Medicine 34(3):1-16 (2015).

  14. The effect of exposure of rats during prenatal period to radiation spreading from mobile phones on renal development. Bedir, et al. Renal Failure 37(2):305-9 (2015).

  15. Effects of prenatal 900 MHz electromagnetic field exposures on the histology of rat kidney. Ulubay, et al. International Journal of Radiation Biology 91(1):35-41 (2015).

  16. Oxidative Stress of Brain and Liver is Increased by Wi-Fi (2.45 GHz) Exposure of Rats During Pregnancy and the Development of Newborns. Çelik, Ömer, et al. Journal of Chemical Neuroanatomy 75(B):134-139 (2015).

  17. ​Neurodegenerative Changes and Apoptosis Induced by Intrauterine and Extrauterine Exposure of Radiofrequency Radiation. Güler, Göknur, et al. Journal of Chemical Neuroanatomy 75(B):128-133 (2015).

  18. Maternal Exposure to a Continuous 900-MHz Electromagnetic Field Provokes Neuronal Loss and Pathological Changes in Cerebellum of 32-Day-Old Female Rat Offspring. Odaci, Ersan, et al. Journal of Chemical Neuroanatomy 75(B):105-110 (2015).

  19. Different Periods of Intrauterine Exposure to Electromagnetic Field: Influence on Female Rats' Fertility, Prenatal and Postnatal Development. Alchalabi, Aklilu, et al. Asian Pacific Journal of Reproduction 5(1):14-23 (2015).

  20. Use of Mobile Phone During Pregnancy and the Risk of Spontaneous Abortion. Mahmoudabadi, Ziaei, et al. Journal of Environmental Health Science and Engineering 13:34 (2015).

  21. Autism-relevant social abnormalities in mice exposed perinatally to extremely low frequency electromagnetic fields. Alsaeed, et al. International Journal of Developmental Neuroscience 37:58-6 (2014).

  22. Influence of pregnancy stage and fetus position on the whole-body and local exposure of the fetus to RF-EMF. Varsier, et al. Physics in Medicine and Biology 59(17):4913-26 (2014).

  23. Dosimetric study of fetal exposure to uniform magnetic fields at 50 Hz. Liorni et al. Bioelectromagnetics 35(8):580-97 (2014).

  24. State of the reproductive system in male rats of 1st generation obtained from irradiated parents and exposed to electromagnetic radiation (897 MHz) during embryogenesis and postnatal development.  Radiats Biol Radioecol 54(2):186-92 (2014).

  25. Pyramidal Cell Loss in the Cornu Ammonis of 32-day-old Female Rats Following Exposure to a 900 Megahertz Electromagnetic Field During Prenatal Days 13–21. Bas, et al. NeuroQuantology Volume 11, Issue 4: 591-599 (2013).

  26. The Effects of 900 Megahertz Electromagnetic Field Applied in the Prenatal Period on Spinal Cord Morphology and Motor Behavior in Female Rat Pups. Odaci, et al. NeuroQuantology Volume 11, Issue 4: 573-581 (2013).

  27. Fetal Radiofrequency Radiation Exposure from 800-1900 mhz-rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice. Aldad, et al. Science Reports 2:312 (2012).

  28. Cranial and Postcranial Skeletal Variations Induced in Mouse Embryos by Mobile Phone Radiation. Fragopoulou, Koussoulakos, et al. Pathophysiology 17(3):169-77 (2010).

  29. Stress Signalling Pathways that Impair Prefrontal Cortex Structure and Function. Arnsten, A. F. National Review of Neuroscience 10, 410–22 (2009).

  30. 900-MHz Microwave Radiation Enhances Gamma-ray Adverse Effects on SHG44 Cells. Cao, et al. Journal of Toxicology and Environmental Health A. 72, 727–32 (2009).

  31. Age-Dependent Effect of Prenatal Stress on Hippocampal Cell Proliferation in Female Rats. Koehl et al. European Journal of Neuroscience 29 635–40 (2009).

  32. Dysbindin Modulates Prefrontal Cortical Glutamatergic Circuits and Working Memory Function in Mice. Jentsch, et al Neuropsychopharmacology 34, 2601–8 (2009).

  33. Maternal Occupational Exposure to Extremely Low Frequency Magnetic Fields and the Risk of Brain Cancer in the Offspring. Li, Mclaughlin, et al. Cancer Causes & Control 20(6):945-55 (2009).

  34. Reproductive and Developmental Effects of EMF in Vertebrate Animal Models. Pourlis, A.F. Pathophysiology 16(2-3):179-89 (2009).

  35. Prenatal and Postnatal Exposure to Cell Phone Use and Behavioral Problems in Children. Divan, et al. Epidemiology 19: 523-529 (2008).

  36. Effects of Prenatal Exposure to a 900 MHz Electromagnetic Field on the Dentate Gyrus of Rats: A Stereological and Histopathological Study. Odaci, et al. Brain Research 1238: 224–229 (2008).

  37. Exposure to Cell Phone Radiation Up-Regulates Apoptosis Genes in Primary Cultures of Neurons and Astrocytes. Zhao, et al. Science Digest 412: 34–38 (2007).

  38. Cell Death Induced by GSM 900-MHz and DCS 1800-MHz Mobile Telephony Radiation. Panagopoulos, et al. Mutation Research 626, 69–78 (2007).

  39. Attention-Deficit/Hyperactivity Disorder: An Overview of the Etiology and a Review of the Literature Relating to the Correlates and Lifecourse Outcomes for Men and Women. Brassett-Harknett, A. & Butler, N. Clinical Psychology Review 27,188–210 (2007).

  40. Attention-Deficit Hyperactivity Disorder. Biederman, J. & Faraone, S. V. Lancet 366, 237–248 (2005)

  41. Acute Exposure to 930 MHz CW Electromagnetic Radiation In Vitro Affects Reactive Oxygen Species Level in Rat Lymphocytes Treated by Iron Ions. Zmyślony, et al. Bioelectromagnetics 25, 324–8 (2004).

  42. Cortical Abnormalities in Children and Adolescent with Attention-Deficit Hyperactivity Disorder. Sowell, E. R. Lancet 362, 1699–707 (2003).

  43. Responses of Neurons to an Amplitude Modulated Microwave Stimulus. Beasond and Semm. Neuroscience Letters 333(3):175-8 (2002).

  44. DNA Damage in Molt-4 T-lymphoblastoid Cells Exposed to Cellular Telephone Radiofrequency Fields In Vitro. Phillips, et al. Bioelectrochemistry and Bioenergetics, 45:1, 103-105 (1998).

  45. Acute Low-Intensity Microwave Exposure Increases DNA Single-Strand Breaks in Rat Brain Cells. Lai, et al. Bioelectromagnetics 16(3):207-10 (1995).

  46. Radiofrequency Microwave Radiation Biological Effects and Safety Standards: A Review. Bolen, S. Rome Laboratory, Air Force Materiel Command, Griffiss Air Force Base, New York (1994).

  47. Influence of Weak Non-Thermic High-Frequency Electromagnetic Fields on the Membrane Potential of Nerve Cells. Kullnick, et al. Bioelectrochemistry and Bioenergetics 27:3, 293-304 (1991).